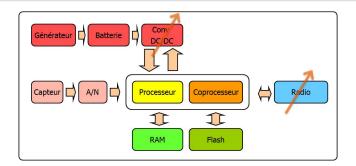
Energy Optimization of Lower Layers in Wireless Sensor Networks

O. Berder, A. Carer, M. Gautier, O. Sentieys, B. Vrigneau

ENSSAT, Université de Rennes1 INRIA/IRISA EPC CAIRN

October 7, 2014

Wireless Sensor Networks


- Wide range of Wireless Sensor Network (WSN) applications
 - Health, buildings and agriculture monitoring, defense, etc
 - 2B€ per year market until 2022
- Set of smart radio nodes generating and relaying messages
- Ad Hoc, fault tolerant networks
- Low cost, low traffic and low power

Which parts of a WSN node are energy consuming?

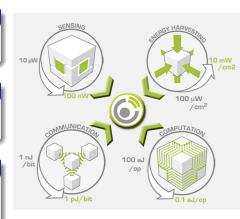
A WSN node is a typical embedded system

Classical power budget

- Radio: 30-70 mW
- Processor: 5-10 mW

How to design an energy efficient WSN platform?

1. Decrease Transmit Power


- Efficient signal processing
- Error detection and correction

2. Optimize radio activity

- MAC protocols
- Wake-up radio

3. Optimize hardware architecture

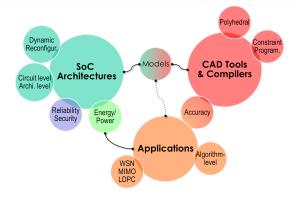
- Co-processing, DVFS, power-gating
- Energy harvesting

source: http://www.ga-project.eu/

Goal of future WSNs: reach energy autonomy!

Outlines

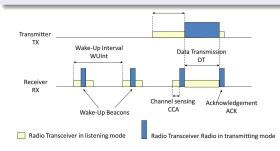
WSN Context


- WSN Context
- Enery modeling
 - CAIRN Team WSN Platform : PowWow
 - Hybrid energy model
- **Energy optimization**
 - Adaptive PHY and MAC layers
 - Cooperative techniques
- Towards completely autonomous nodes
 - Towards completely autonomous nodes
 - Wake-up period adaptation
- Collaborative projects in energy-efficient WSN

CAIRN research topics

CAIRN Team at a glance

- Created in 2008, Rennes and Lannion campuses
- INRIA, CNRS, Univ. Rennes 1, ENS Rennes
- +50 people: 4PR, 8 MCF, 3 researchers, 25 PhD, 8 IGR

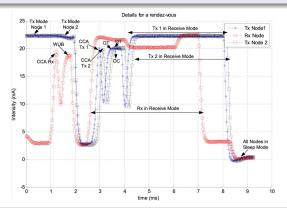

CAIRN Team WSN Platform: PowWow

Hardware components

- TI MSP430 Microprocessor
- TI CC2420 Radio transceiver

- Actel Igloo FPGA coprocessor
- Energy harvesting board

Asynchronous MAC protocol: well suited to low traffic applications



Hybrid energy model

Scenario-based hybrid model [M. Cartron and M.M. Alam PhDs]

- Real-Time measurements for scenarios
- Analytic expressions for traffic parameters
- Accurate energy consumption estimation [alam11eurasipjes]

Algorithm Library

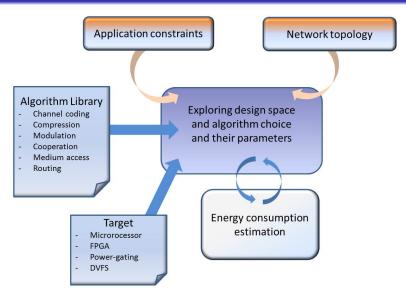
- Channel coding
- Compression
- Modulation
- Cooperation
- Medium access
- Routing

Target

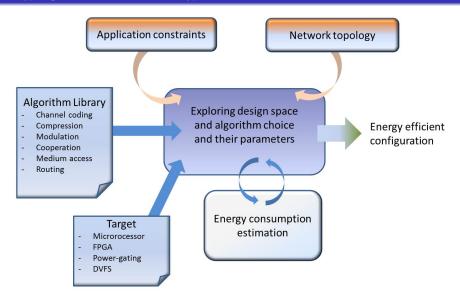
- Microrocessor
- FPGA
- Power-gating
- DVFS

Application constraints

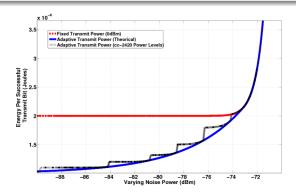
Network topology


Algorithm Library

- Channel coding
- Compression
- Modulation
- Cooperation
- Medium access
- Routing

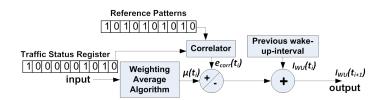

Target

- Microrocessor
- FPGA
- Power-gating
- DVFS



Adaptation to the channel quality

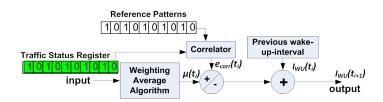
- Lifetime increase through static TX power tuning [M. Cartron PhD]
- Different coding schemes (implementation on low-power FPGA)
- Dynamic TX power adaptation



Wake-up interval optimization

Decrease radio activity [M.M. Alam PhD]

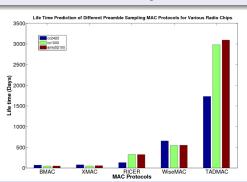
- Static adaptation to application constraints [sentieys07dasip]
- Traffic-Aware Dynamic MAC protocol [alam12ieeejetcas, alam11bsn]
 - Definition of Traffic Status Registers
 - Self-adaptive algorithm
 - Significant reduction of idle listening



Wake-up interval optimization

Decrease radio activity [M.M. Alam PhD]

- Static adaptation to application constraints [sentieys07dasip]
- Traffic-Aware Dynamic MAC protocol [alam12ieeejetcas, alam11bsn]
 - Definition of Traffic Status Registers
 - Self-adaptive algorithm
 - Significant reduction of idle listening

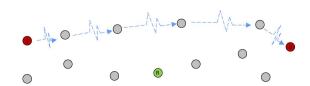


Wake-up interval optimization

Decrease radio activity [M.M. Alam PhD]

- Static adaptation to application constraints [sentieys07dasip]
- Traffic-Aware Dynamic MAC protocol [alam12ieeejetcas, alam11bsn]
 - Definition of Traffic Status Registers
 - Self-adaptive algorithm
 - Significant reduction of idle listening

Cooperative strategies

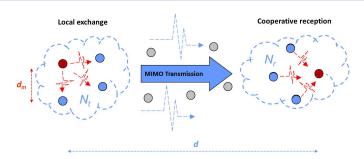


Which one to choose between

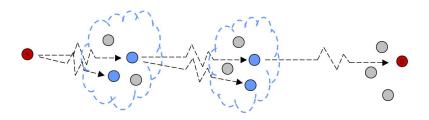
• Direct transmission: fast but energy consuming (when possible)

Cooperative strategies

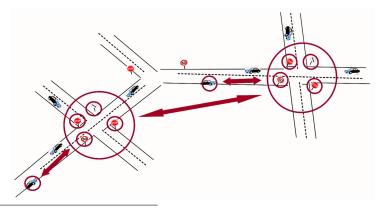
- Direct transmission: fast but energy consuming (when possible)
- Multi-hop: variable latency



- Direct transmission: fast but energy consuming (when possible)
- Multi-hop: variable latency
- Cooperative relay: simple, reliable [tran11wcc, tran11ccc, tran13eurasipjwcn]

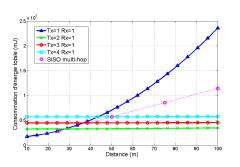

Cooperative strategies

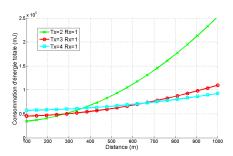
- Direct transmission: fast but energy consuming (when possible)
- Multi-hop: variable latency
- Cooperative relay: simple, reliable
- Cooperative MIMO: efficient but synchronization requirement and complex reception [nguyen07vtc, nguyen08icc, nguyen11ieeetits]


Cooperative strategies

- Direct transmission: fast but energy consuming (when possible)
- Multi-hop: variable latency
- Cooperative relay: simple, reliable
- Cooperative MIMO: efficient but synchronization requirement and complex reception
- Opportunistic relaying: reliable but variable latency [zhang12ahn]

ITS Application Context

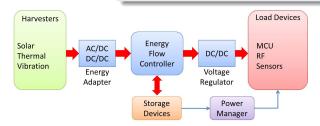

- Application constraints and network topology can drive cooperative scheme choice
- Infrastructure to Vehicle (I2V) Communications in CAPTIV¹
- Cooperative MIMO well suited to crossroads configuration



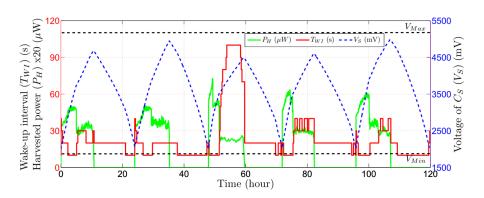
¹Cooperative strAtegies for low Power wireless Transmissions between Infrastructure and Vehicles

Energy efficiency of cooperative MIMO [T.D. Nguyen PhD]

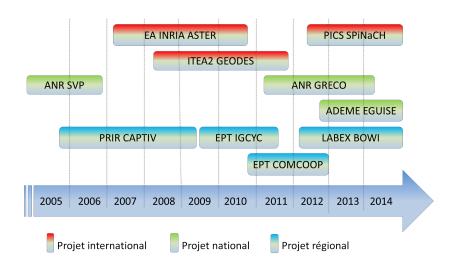
- Energy models (literature, transceiver characteristics)
- Cooperative MISO more energy efficient from 30 meters
- Cooperation at the receiver not really energy efficient



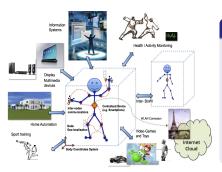
Towards a complete autonomy of wireless nodes


Power manager design [GRECO, N.L. Trong PhD]

- Multi-source harvesting hardware
 - Light, Heat, Moves, RF, Bio ...
- Prediction algorithms
- Energy neutral operations
- Efficient implementation


Wake-up period adaptation

- Daily energy neutral operation
- No battery failure
- Data rate increase



Collaborative projects in energy-efficient WSN

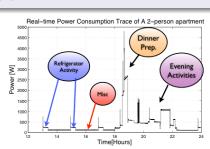
Wireless Body Area Networks

BOdy World Interaction

- CominLabs Labex project
- 4 linked PhD subjects
 - Cooperative communications
 - Channel models
 - Hardware architecture
 - Algorithms for gesture recognition

I3 Toys

- Intelligent Interfaces for Improved Access to Toys for children with physical disabilities
- Gesture recognition



Energy consumption modeling

New approach

• Less intrusive and cooperative sensors

http://nesl.ee.ucla.edu (viridiscope)

PhD Thesis (2013-2015)

- Algorithms with data fusion
- Best trade-off radio/computation

Thanks for listening!

