Logo de la rubrique Les algorithmes pour l’IA

Les algorithmes pour l’IA

L’intelligence artificielle est de plus en plus intéressante pour les applications embarquées. Derrière le mot IA, se cachent des algorithmes et surtout des mathématiques parfois complexes et une mise au point technique délicate. Il est possible d’utiliser aujourd’hui des API qui cachent cette complexité au risque d’être surpris par le fonctionnement si l’on ne connaît pas certains modèles mathématiques. D’un point de vue technique, l’IA sur le cloud demande des ressources numériques importantes et l’IA embarquée une électronique au plus près du capteur pour simplifier les développements et faciliter le temps réel.
Dans cette formation nous allons découvrir l’IA, les modèles mathématiques associés, et dans ce contexte les problèmes liés aux systèmes embarqués.

OBJECTIFS

- Connaître les bases de l’Intelligence Artificielle ;
- Connaître les familles d’algorithmes : Machine learning et Deep learning ;
- Connaître les contraintes pour les systèmes embarqués.

PUBLIC VISE

Concepteurs et Développeurs d’applications embarquées.

PREREQUIS

Connaître le langage python débutant et les lignes de commande Linux.

INTERVENANT

Ingénieur de Recherche au CNRS - 30 ans d’expérience en modélisation et développement logiciel. Enseigne depuis 20 ans dans plusieurs écoles.
Le programme CAP’TRONIC aide, chaque année, 400 entreprises à monter en compétences sur les technologies liées aux systèmes électroniques et logiciel embarqué.

PRIX

Non-adhérent : 1 200€ HT
Adhérent CAP’TRONIC : 900€ HT

Remarque : Jessica France est titulaire d’un numéro d’agrément de formation continue et est référencé DATADOCK depuis le 1er juillet 2017. Cette formation est éligible au financement par votre Opérateur de Compétences (OPCO) hors CPF.

LIEU

CEA-TECH - 51 rue de l’Innovation 31670 LABEGE

PROGRAMME

Tour de table

Première ½ journée (3h30) - Introduction

Notions de base
Qu’est-ce que l’intelligence artificielle ?
Approche scientifique de l’IA
Historique
Pourquoi parle-t-on de l’IA maintenant ?
Pourquoi l’intelligence artificielle ?
Application de l’intelligence artificielle en 2022
Les différentes approches
Structuration
Prédiction
Modèle

Apprentissage automatique (Machine learning)
Notion d’apprentissage automatique
Approche habituelle
Approche machine learning
Les différents type d’apprentissage
Apprentissage supervisé
Apprentissage non supervisé ou prédictif
Apprentissage semi-supervisé
Apprentissage par renforcement
Autres apprentissages
Apprentissage profond (Deep learning)
Définition
Neurone biologique
Perceptron
Apprentissage
Réseau de neurone / Perceptron
Evolution

1er/2e journée - Machine learning

Notions de base
Notion de vraisemblance
Approche du machine learning
Analyse des données
Outils du machine learning et deep learning
Apprentissage et feedback

Apprentissage supervisé :
Régression linéaire simple
Régression linéaire multiple
Descente de gradient ordinaire et stochastique
Equation normale
Régression polynomiale
Modèles linéaires régularisés
Réseau de neurone (fonction d’activation, maillage, type de réseau)

2e journée - Machine learning

Apprentissage supervisé (suite)
Machine à vecteurs de support linéaire et non linéaire
Arbre de décision
Naïve Bayes Classifier
Forêt aléatoire

Apprentissage non supervisé
K-NN
K-MEANS
C-means Clustering

Limitation des systèmes embarqués
Moyenne par récurrence
Variance par récurrence
Calcul déporté des paramètres du modèle

Apprentissage par renforcement

Analyse des séries chronologiques

Travaux pratiques : Présentation et installation des outils : Matlab et commande de base, Jupyter Python

TP1 Régression linéaire simple
Définition d’un jeu de données
Ecriture d’un script
Calcul d’une régression linéaire (RMSE, coefficient de détermination, affichage graphique)
Utilisation du modèle pour la prédiction

TP2 Apprentissage supervisé - Régression linéaire capteur de température et pression
Production des données d’un capteur
Régression linéaire, avec les données de température / pression
Utilisation du modèle pour la prédiction

TP3 Apprentissage supervisé - Régression linéaire multiple

TP4 Apprentissage supervisé - Apprentissage d’un réseau de neurone
Exemple de calcul de propagation avant et arrière
Reconnaissance d’image : Classification d’image
Classificateur de données - Multi-layer Perceptron classifier

TP5 Équation normale

TP6 Classification Machine à Vecteur de support linéaire (SVM)

TP7 Arbre de décision

TP8 Apprentissage non supervisé KNN

TP9 Analyse séries chronologiques

Tour de table

ORGANISATION

Moyens pédagogiques : Support de cours – Travaux pratiques – Démonstrations – Assistance pédagogique assurée par le formateur 1 mois après la formation.
Moyens permettant d’apprécier les résultats de l’action : Evaluation de l’action de formation par l’envoi d’un questionnaire de satisfaction à chaud à l’issue de la formation, puis d’un questionnaire à froid quelques semaines après la formation.
Moyen permettant de suivre l’exécution de l’action : Evaluation des connaissances via un questionnaire avant et après la formation.
Sanction de la formation : Attestation d’assiduité.

RENSEIGNEMENTS ET INSCRIPTION

Sophie BASSE-CATHALINAT, cathalinat@captronic.fr - 06 79 49 15 99
Pour toute question y compris les conditions d’accès pour les publics en situation de handicap.

Pré inscription en ligne

Les algorithmes pour l’IA du 18 au 19 octobre 2022 à Labège (31)



Les informations recueillies sur ce formulaire sont enregistrées dans un fichier informatisé par JESSICA France à des fins de communication via emailing. Elles sont conservées jusqu’à votre demande de désinscription et sont destinées aux équipes de JESSICA France localisées en France. Conformément à la loi « informatique et libertés », vous pouvez exercer votre droit d’accès aux données vous concernant et les faire rectifier en contactant contact@captronic.fr

Informations mises à jour le 20/10/2021